
J
H
E
P
0
7
(
2
0
0
8
)
0
5
7

Published by Institute of Physics Publishing for SISSA

Received: April 28, 2008

Revised: June 12, 2008

Accepted: July 1, 2008

Published: July 10, 2008

Planar graphs on the world sheet: the Hamiltonian

approach∗

Korkut Bardakci

Department of Physics, University of California at Berkeley and

Theoretical Physics Group, Lawrence Berkeley National Laboratory,

University of California,

Berkeley, California 94720, U.S.A.

E-mail: kbardakci@lbl.gov

Abstract: The present work continues the program of summing planar Feynman graphs

on the world sheet. Although it is based on the same classical action introduced in the

earlier work, there are two important new features: Instead of the path integral used in
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divergence that plagued the earlier work is absent. Using a family of projection operators,

we are able to give an exact representation on the world sheet of the planar graphs of both

the φ3 theory, on which most of the previous work was based, and also of the φ4 theory. We

then apply the mean field approximation to determine the structure of the ground state.

In agreement with the earlier work, we find that the graphs of φ3 theory form a dense

network (condensate) on the world sheet. In the case of the φ4 theory, graphs condense for

the unphysical (attractive) sign of the coupling, whereas there is no condensation for the

physical (repulsive) sign.
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1. Introduction

Several years ago, the present author and Charles Thorn initiated a program for summing

planar graphs of a given field theory [1, 2]. The model most intensively studied so far is the

φ3 theory, although there have been extensions to more physical theories as well [3]. The

starting point of this program is the observation, due to G.’t Hooft, that planar graphs of φ3

theory, expressed in light cone variables, can be represented on the world sheet [4]. It was

shown in [1] that this representation can be derived from a local world sheet field theory.

This reformulation opened the way for the application of various field theory techniques to

the summation of planar graphs.

The present article can be thought of as a follow up to an earlier work on the same

subject [5], which we review in section 2. Although there is quite a bit of overlap between

the present work and [5], there are also significant differences. The part of the earlier work

that forms the starting point of this paper is the path integral, based on a suitable action,

which automatically sums the planar graphs of massless φ3 model. Here, we also start with

same world sheet fields and the same action as in [5] (eq. (2.7)). However, as it stands,

this path integral has two defects: The factor of 1/(2p+) in the propagator (eq. (2.1)) is

missing and, more seriously, it suffers from both infrared and ultraviolet divergences. In [5],

the infrared divergence was regulated by discretizing one of the coordinates of the world

sheet. In section 2, we point out that this discretization is the same as compactifying the

light cone coordinate x− on a circle. This type of compactification was first introduced

in connection with the M theory [6, 7]; it can be viewed as an infinite boost of more
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standard compactification of a spacelike direction. We take the point of view that this

is not really a serious problem, since, after all, the compactified model is interesting and

perfectly consistent on its own right. How to decompactify it is an interesting question

which will be left for future research.

The ultraviolet divergence has a more complicated origin. As explained in section 2, it

is caused by the integration over an auxilliary field on the world sheet. The solution to this

problem proposed in [5] was to introduce a Gaussian convergence factor (eq. (2.8)). This

cures the original divergence, but unfortunately, it introduces a new ultraviolet divergence,

which has to be regulated by a cutoff. The existence of this cutoff, which is really an ad

hoc modification of the theory, has been a stumbling block to the further development of

the program, since it is not clear how to get rid of it. The standard idea of renormalization

does not seem to be applicable here. The main result of this article is to show that when

the model is quantized correctly, the original divergence is absent. Therefore, there is

no need for the Gaussian convergence factor, and consequently, the ultraviolet divergence

which resulted from it is also avoided. This is the essential improvement introduced here

over the earlier work.

In view of the problem discussed above, to what extent can we trust the action given

by (2.7)? At the end of section 2, we argue that we can trust it as a classical action: it

reproduces the correct equations of motion, eqs. (2.2) and (2.3), for the world sheet fields.

Quantizing it by the path integral based on this action is problematic since, as we have

already pointed out, it results in a divergent answer.

To overcome this difficulty, we take a different, and we believe, a better founded route

to quantization. Following the well known prescription of elementary quantum mechanics,

we read off the canonical variables and the Hamiltonian from the classical theory, and

then impose the standard canonical commutation relations. This defines the dynamics in

the Heisenberg picture. We argue in sections 3 and 4 that the model consists of a finite

number of degrees of freedom, and therefore it cannot have any ultraviolet divergence,

whose existence requires an infinite number of degrees of freedom. As a check, the ground

state energy, computed in the mean field approximation in section 6, comes out finite.

We will carry out the program described above in two steps. First, the non-interacting

model is treated in section 3. In this simple case, the quantized Hamiltonian is easy to

construct; however, to express it in a compact form, we found it necessary to introduce

a family of projection operators. These operators and their close relatives later play an

essential role in the incorporation of the mising 1/(2p+) factor and in the generalization

to the φ4 model. The idea behind these projection operators was already present in refer-

ence [5]; but there they were introduced in the context of the mean field approximation.

Here they are given a precise formulation independent of any approximation scheme.

In the second step of the program, carried out in section 4, the interaction term is

taken into account. Rather than try to do this directly in the Heisenberg picture, it is

more convenient to take a detour and do the quantization in the interaction representation.

The advantage of this approach is that in between the interaction times, fields propagate

freely, and the free Hamiltonian and its quantization developed in the previous section can

be taken over without any change. Also, an extra term induced by the interaction can be
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computed with relative ease.

So far, we have been working in the Heisenberg picture based on the Hamiltonian;

but once we have the full Hamiltonian, we can reconstruct the corresponding action, (4.7),

through the standard Legendre transformation. Since the action depends on both the coor-

dinates and their conjugate momenta, to compare it to a path integral based on an action

like eq. (2.4), which depends only on the coordinates (fields), one has to carry out the

integration over the momenta. In most practical cases, the dependence on the momenta is

quadratic, so the integration can be explicitly done. In contrast, here the momentum de-

pendence is more complicated, and doing the momentum integration is really not feasible.

Therefore, we conclude that the action of equation (2.4) makes sense only classically and

it cannot be used directly in the path integral. One has either to forego the path integral

entirely and instead work with the Hamiltonian, as we are doing here, or try to work with

the phase space version of the path integral. This point is discussed more fully at the end

of section 4.

In section 5, the missing 1/(2p+) factor is incorporated in the definition of the inter-

action vertex. This is done by means of a projection operator, closely related to the one

already used in the construction of the free Hamiltonian. With this missing step finally in

place, we have an exact reformulation of the planar φ3 theory in terms of a Hamiltonian

on the world sheet.

Needless to say, although this Hamiltonian is exact, it is also quite complicated, and

one needs a manageable approximation scheme. In section 6, we introduce the mean field

approximation scheme, which was already used extensively in the past work [2, 5]. This

approximation scheme is most conveniently formulated in terms of the composite field ρ,

defined by eq. (2.5): It simply amounts to replacing ρ by its ground state expectation

value ρ0. The ground state energy is then computed as a function of ρ0, and minimizing

it determines the value of ρ0. This is pretty much along the lines of the standard effective

potential calculation of the ground state [8].

In section 6, we carry out this calculation and find a non-zero value for ρ0, which

implies the following interesting structure for the world sheet. The world sheet consists

of two parts: The bulk, where the field φ propagates freely, and the boundaries, marked

by solid lines in figure 1, where Dirichlet boundary conditions are imposed (eq. (2.3)).

The field ρ measures the density of the solid lines (boundaries) on the world sheet. A

non-zero ground state expectation value ρ0 corresponds to a finite density of solid lines,

which we identify with a new phase of the model, and call it the condensate phase. In this

phase, the Feynman graphs have condensed to form a dense network on the world sheet,

and the dominant contribution to the ground state comes from the higher order graphs. In

contrast, if ρ0 is zero, the density of the solid lines tends to zero in the limit of large radius of

compactification. In this phase, which we call the perturbative phase, the main contribution

to the ground state comes from the lower order graphs. The calculation in section 6 shows

that the condensate phase has lower ground state energy than the perturbative phase. At

the end of the section, we compare the cutoff independent ground state energy with the

cutoff dependent result of [5], and point out both the common features and the differences.

At this point, a natural question to ask is whether the condensation of the Feynman
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p +σ

τ

Figure 1: A typical graph.

graphs leads to the formation of a string. The geometric intuition indeed suggests that a

dense network of Feynman graphs on the world sheet should be identified with some sort of

a string; in fact, this was the picture that motivated the original work on this subject [9, 10].

This picture should be confirmed or disproved by determining the spectrum of the model

and comparing it to the linearly rising trajectories of string theory. We hope to return to

this problem in the future.

In the next section, section 7, we apply the machinery developed in the previous

sections to the φ4 theory. First, we present an exact formulation of the model on the world

sheet, and then we apply the mean field method to determine its ground state. For the

physical sign of the coupling constant, corresponding to a stable theory, nothing interesting

happens: It is the perturbative phase that is energetically favored. On the other hand,

for the “wrong” sign of the coupling constant, corresponding to an unstable model, the

condensate phase has the lower ground state energy. We discuss a possible physical reason

for this correlation between instability and condensate formation. Finally, in section 8, we

summarize our conclusions and suggest some directions for future research.

2. The world sheet action

In this section, we briefly review the the world sheet action, developed in references [1, 2, 5],

for the planar graphs of φ3 theory in D + 2 dimensions. Starting with the world sheet

parametrized by the light cone variables

τ = x+ = (x0 + x1)/
√

2, σ = p+ = (p0 + p1)/
√

2,

a general planar Feynman graph can be represented by a bunch of horizontal solid lines

(figure 1). The n’th solid line carries a transverse momentum qn, and two adjacent lines n

and n+1, represent the light cone propagator

∆(p) =
θ(τ)

2p+
exp

(

−iτ p2 +m2

2p+

)

, (2.1)

where pn = qn − qn+1. The interaction takes place at the beginning and the end of each

line, where a factor of g, the coupling constant, is inserted [1, 4].
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We remind the reader that the planar model we are studying is the large N limit of a

field theory with the interaction
∫

dD+2x g Tr(φ3(x)),

where the field φ is an N × N Hermitian matrix. As ’t Hooft showed [5], in this limit,

each planar graph appears once and once only. There are no local symmetry factors,

such as the well known factor of 1/2 associated with the one loop contribution to the

propagator of an ordinary φ3 theory, where φ is not a matrix. There may be, however,

global symmetry factors associated with special configurations of momenta of the external

lines. In this paper, we are only considering generic graphs with no global symmetries, and

we are focusing exclusively on the dynamics in the bulk, represented by the Hamiltonian.

In the case m = 0, the light cone Feynman rules sketched above can be reproduced

by a field theory that lives on the world sheet. To keep things simple, we will study the

massless model exclusively in this work, although using the tools we are going to develop,

one can easily introduce a finite mass. Here, we briefly describe the equivalent field theory,

and refer to [5] for the detailed derivations. The transverse momenta q, originally defined

only on the solid lines, can be promoted to local fields q(σ, τ) over the whole world sheet.

The solid lines form the world sheet boundaries, and q satisfies the equation

∂2
σq(σ, τ) = 0, (2.2)

in the bulk, and the Dirichlet condition

∂τq(σ, τ) = 0, (2.3)

on the boundaries. With the help of a Lagrange multiplier field y(σ, τ), both the equations

of motion and the boundary conditions are incorporated in the following action [5]:

Sq =

∫ p+

0
dσ

∫

dτ

(

−1

2
q′2 + ρy · q̇

)

, (2.4)

where a dot represents derivative with respect to τ and a prime the derivative with respect

to σ. The σ coordinate is compactified by imposing periodic boundary conditions at σ = 0

and σ = p+, where p+ is the total + component of the momentum entering the graph. The

field ρ(σ, τ) is a delta function on the boundaries and vanishes in the bulk: It is inserted

to ensure that the Dirichlet condition (2.3) is imposed only on the boundaries.

In the functional integral, one has to integrate not only over q and y, but also over

the locations and the lengths of the solid lines. This is best accomplished by introducing

a two component fermion field ψi(σ, τ), i = 1, 2, and its adjoint ψ̄i, and setting

ρ =
1

2
ψ̄(1 − σ3)ψ. (2.5)

The action for the fermions is1

Sf =

∫ p+

0
dσ

∫

dτ(iψ̄ψ̇ − g ψ̄σ1ψ). (2.6)

1Here we are using the letter σ for both the world sheet coordinate and also for Pauli matrices to be

sandwiched between ψ̄ and ψ. Hopefully, there should be no confusion about the dual use of this letter.
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Figure 2: Solid and dotted lines.

So far, we have been treating both σ and τ as continuous variables. However, as ex-

plained in the introduction, to avoid infrared divergences, we are going to compactify the

lightcone coordinate x− at a radius R. This is equivalent to discretizing the coordinate σ

into segments of length a, where a = 2π/R. The discretization also makes it easy to visual-

ize what is going on on the world sheet. As pictured in figure 2, the world sheet consists of

horizontal dotted and solid lines, spaced at distance a apart. The boundaries are marked

by the solid lines, associated with the i = 2 component of the fermion, and the bulk is filled

with the dotted lines, associated with the i = 1 component. The first term in eq. (2.6)

represents the free propagation of the fermion, tracing a solid or dotted line, and the second

term, which converts a dotted line into a solid one or vice versa, represents the interaction.

We note that there are some extra unwanted states in the fermionic Hilbert space; they

can be eliminated by truncating it to states singly occupied at each value of σ. This can be

done consistently since fermion number is locally conserved. Integrating over the fermion

field is then the same as summing over the location and the length of the boundaries.

The integrals over σ in eqs. (2.4), (2.6) are in reality finite sums with N = p+/a terms:

∫

dσ ↔
∑

σ

.

In order not to complicate the notation, from time to time, we will still write an integral over

σ, although in reality it is a discrete sum. Wherever possible, we will simplify the algebra by

taking R to be large, but always finite. For example, when integrating over q ((3.1), (3.2)),

we used the large R (small a) approximation. This is not essential, but it avoids unnecessary

complications. In contrast to σ, the time coordinate τ will remain continuous.

It is now natural to identify

S = Sq + Sf (2.7)

as the candidate for the total action. There are, however, two problems with this choice:

a) The exponential part of the propagator in eq. (2.1) is correctly reproduced, but the

prefactor 1/(2p+) is missing. This will be corrected in section 5.

b) A more serious drawback is that, as it stands, the functional integral over y is divergent.

This is because y lives effectively only on the solid lines: The integrand is independent of
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y in the bulk (on the dotted lines). Consequently, the integrations over those y which live

in the bulk are divergent.

The solution to this problem, proposed in reference [5], was to introduce an additional

term given by

Sg.f =

∫ p+

0
dσ

∫

dτ

(

−1

2
α2ρ̄y2

)

,

where α is a parameter and ρ̄ is defined by

ρ̄ =
1

2
ψ̄(1 + σ3)ψ, (2.8)

and it is complimentary to ρ: It vanishes on the solid lines and provides a Gaussian cutoff

for the functional integral on the dotted lines. The divergence mentioned above is therefore

cured; but unfortunately, it is replaced by a new divergence: The action (2.8) is ultraviolet

divergent and needs a cutoff. One way to see this is to notice that in the bulk, Sg.f

introduces a mass term for the field y, but there is no corresponding kinetic energy term in

the action. A field theory with only a mass term in the action has a constant, momentum

independent propagator and therefore it is ultraviolet divergent. In reference [5], the model

studied was an ultraviolet regulated theory based on the action

S = Sq + Sf + Sg.f .

Apart from the drawback of the need for an ultraviolet cutoff, the introduction of a new

parameter α suggests that this model may no longer be the original φ3 theory but some

modification of it.

In the present work, we wish to avoid introducing any spurious cutoff or modifying

the original φ3 theory in any way. Therefore, our starting point will simply be eq. (2.4),

without the additional term Sg.f . We then face the problem of a divergent functional

integral mentioned above.

The solution to this problem, as we shall soon see, is to adopt the Hamiltonian for-

mulation. We would like to emphasize that, independent of the divergence problems, the

Hamiltonian approach is the correct approach. Our reasoning goes as follows:

(a) The action of eq. (2.4) is correct classically. The classical equations derived from

it are precisely the bulk equations (2.2) and the boundary conditions (2.3). The

solution to these equations reproduces any arbitrary light cone Feynman graph for

fixed boundaries as a function of the momenta flowing through these boundaries.

(b) This takes care of the “classical” part of the problem. The “quantum” part is the

integration over the momenta and the positions of the boundaries. Keeping the

boundaries fixed for the moment, there are two options for quantization: The first

option is to plug in the action (2.4) in the exponent and integrate functionally over

the fields. The fundamental problem with this choice is that we do not know a priori

what measure to use in the functional integral.
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(c) The second option is to take the standard route to quantization: Read off the canoni-

cal variables from the classical action and impose the canonical commutation relations

and finally construct the Hamiltonian. This approach, which we are going to follow, is

the more fundamental one. Apart from possible operator ordering ambiguities, which

are not present in this case, given the classical action, the corresponding quantum

Hamiltonian is uniquely determined. If so desired, from the Hamiltonian in operator

form, one can derive the corresponding path integral as Feynman did and thereby

deduce the integration measure.

(d) In the free theory, the dotted and solid lines are eternal, but the interaction converts

a dotted line into a solid one and vice versa. This is taken care of by introducing

fermions on the world sheet. (see eq. (2.6)). This formalism was extensively developed

in the earlier work [2, 5], and it is applicable here without any change.

(e) Although we find our canonical quantization of the classical action quite compelling,

it is still desirable to demonstrate directly that the Hamiltonian formalism correctly

reproduces the light cone perturbation series on the world sheet. We sketch such a

direct argument at the end of section 5.

3. The Hamiltonian for the free theory

Rather than dealing with the interacting theory in its full complexity, it is much easier to

solve the problems discussed in the last section in the context of the perturbation expansion

in powers of g. The strategy is to first construct the Hamiltonian for the non-interacting

model, and then include the interaction by going over to the interaction representation. The

starting point is the action of eq. (2.7), with g = 0. Since there is no interaction, the solid

and dotted lines are eternal, and the world sheet configuration, being time independent, is

well suited for the Hamiltonian description. Let us first consider a particular graph with n

eternal solid lines, that is with lines with no beginning or end, located at σ = σa, where a

runs from 1 to n. They are ordered according to increasing σ, with σa > σb iff a > b. The

action Sq can then explicitly be written as

S(0)
q =

∫ p+

0
dσ

∫

dτ

(

−1

2
q′2

)

+

∫

dτ

(

n
∑

a=1

(q̇ · y)σ=σa

)

. (3.1)

For this simple case, it is easy to avoid the divergent functional integrals mentioned

earlier. The above action depends only on y(σa, τ), the Lagrange multipliers associated

with the solid lines. The divergence comes about if one introduces additional unneeded y’s

located on the dotted lines and integrates over them. Therefore, if we agree to integrate

only over these y that live on the solid lines, there is no longer any problem. However,

this action has a serious shortcoming: It is only applicable to a particular graph with given

number of solid lines located at specified positions, and different graphs are associated with

different actions. In a free theory, since the solid lines are eternal, this is not a problem,

but this form of the action is very awkward to generalize to the interacting theory, where
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the number and positions of the solid lines can change. One could try to overcome this

difficulty by attaching a y to every line, solid or dotted, but as we explained earlier, one

then is faced with the problem of a divergent functional integral. We shall show in what

follows that both of these problems can be resolved in the Hamiltonian approach.

We take the action (3.1) as our starting point for the construction of a Hamiltonian.

We choose y(σa), a = 1, . . . , n, as our canonical variables, where σa specify the location of

the solid lines. On the other hand, the q’s are auxilliary variables; one can eliminate them

in favor of the y’s through the equations of motion,

q(σa, τ) =
1

2

∑

b

(|σa − σb| ẏ(σb, τ)) , (3.2)

where we have dropped a term proportional to ρ̇. This is justified for the non-interacting

theory (g = 0), since the fermion fields and therefore ρ are time independent.

The action can now be rewritten solely in terms of y’s:

S(0) =

∫

dτL(0),

L(0) =
∑

a,b

(

−1

4
|σa − σb| ẏ(σa, τ) · ẏ(σb, τ)

)

, (3.3)

and the momenta canonically conjugate to y(σa) are:

Π(σa, τ) = −q(σa, τ) = −1

2

∑

b

(|σa − σb| ẏ(σb, τ)) . (3.4)

Conversely, ẏ’s can be expressed in terms of the canonical momenta by,

ẏ(σa) =
Π(σa) − Π(σa+1)

σa+1 − σa
− Π(σa−1) − Π(σa)

σa − σa−1
. (3.5)

Using these equations, the Hamiltonian can be written in terms of the canonical momenta:

H0 =
∑

a

Π(σa) · ẏ(σa) − L(0)

=
1

2

∑

a

(Π(σa+1) − Π(σa))
2

σa+1 − σa
. (3.6)

The model is quantized by letting

Π(σa) → −i ∂

∂y(σa)
, a = 1, . . . , n. (3.7)

It is clear that the eigenstates of momenta diagonalize the Hamiltonian, and the spectrum

is a continuum starting at zero. The corresponding Hilbert space is therefore labeled by

the eigenstates of the y’s associated with the solid lines, or alternatively, by the eigenstates

of the conjugate momenta. The difficulty now is that each graph with a different set of

lines is associated with a different Hilbert space, and it is then very awkward to deal with
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the interaction, which generates transitions between these Hilbert spaces. This problem

can simply be avoided by starting with one master Hilbert space which includes all the

possible graphs. This new Hilbert space is again spanned by the simultaneous eigenvalues

of y(σi) at a fixed τ . But σi are no longer restricted to the positions of the solid lines, and

accordingly, y is now defined over the whole discretized world sheet, including both dotted

and solid lines. Although the interaction term causes transitions between solid and dotted

lines, the Hilbert space remains the same.

What about the Hamiltonian? The Hamiltonian is given by eq. (3.6), with σa restricted

to the positions of solid lines as before. The Π’s associated with the dotted lines are not

present in the Hamiltonian, and the corresponding y’s are constants of motion, fixed by

the initial conditions. Since, unlike in the action formulation, there is no integration over

these y’s, there is no divergence problem in the Hamiltonian formulation.

There still remains one final obstacle to surmount. Although there is now only one

Hilbert space for all different graphs, there is a different Hamiltonian for each graph of the

free theory. This is because the sum in (3.6) is restricted to the positions of the solid lines,

and the location and the number of solid lines change from graph to graph. If the interaction

is turned on, there will be transitions between different Hamiltonians, again an awkward

situation. Fortunately, the world sheet fermion field, introduced earlier [5] and reviewed

in section 2, was invented to solve just this kind of a problem. So far, in constructing the

Hamiltonian, we did not need the fermions, but now they become indispensable. Recall

that in eq. (3.6), σa and σa+1 refer to the locations of two successive solid lines, seperated

by only the dotted lines (figure 3). We note that this is also the configuration for a free

propagator; after all, the free Hamiltonian is nothing but a collection of free propagators.

Out of the fermionic fields, we wish to construct an projection operator which automatically

selects such configurations. Let us now define, for any two σi and σj, with σj > σi,

F(σi, σj) = ρ(σi)

(

k=j−1
∏

k=i+1

ρ̄(σk)

)

ρ(σj), (3.8)

where ρ and ρ̄ are defined by eqs. (2.5) and (2.8), and they are located at the same τ .

We usually suppress the dependence on time coordinate τ , but in the definition of the

Hamiltonian, for example, in eq. (3.10), it is understood that all fields are at the same τ .

We recall that ρ is one on solid lines and zero on the dotted ones, whereas ρ̄ is zero on the

solid lines and one on the dotted ones, with

ρ+ ρ̄ = 1.

Our notation is such that σa, σb etc. refer to the positions of only the solid lines, whereas

σi, σj etc. refer to the positions of both the solid and the dotted lines.

From this definition, it follows that

F(σi, σj) = 1, (3.9)

if and only if two solid lines are located at σi and σj, seperated only by dotted lines, as

in figure 3. We recall that the Hamiltonian (3.6) receives contribution only from these

– 10 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
7

σ

σ
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Figure 3: Solid lines seperated by only dotted lines.

configurations, and for all other configurations, F(σi, σj) is zero. With the aid of this

projection operator, eq. (3.6) can be rewritten as

H0 =
1

4

∑

i,j

(

(Π(σj) − Π(σi))
2

|σj − σi|
F(σi, σj)

)

, (3.10)

where, the sum over i and j are unrestricted.

To the above Hamiltonian, we have to add the Hamiltonian for the fermion field. But

in the non-interacting theory, with g = 0, and the fermionic Hamiltonian is zero. We

can now quantize the bosonic sector as in eq. (3.7) and the fermionic sector by imposing

the standard anticommutation relations. As explained in section 2, we also impose the

constraint that fermion number at each site is always one. ρ(σ) has then two possible

eigenvalues for each σ: ρ = 1 labeling solid lines and ρ = 0, labeling dotted lines. The

Hilbert space, being a superposition of these possibilities, represents all free graphs, with

all possible combinations of eternal solid and dotted lines. After quantization, H0 becomes

a master Hamiltonian operating in this Hilbert space, and the problems discussed earlier,

involving a multitude of Hamiltonians and Hilbert spaces, are resolved. In the next section,

we will generalize the present treatment to the interacting theory.

4. The Hamiltonian for the interacting theory

It may at first appear that the Hamiltonian of the interacting theory is the Hamiltonian

of the free theory, plus the interaction term

g
∑

σ

ψ̄σ1ψ.

This is not, however, the end of the story; the inclusion of interaction presents a new

problem: We recall that when q was eliminated in favor of y through the equations of

motion (3.2), there was a step that involved integration by parts of the time derivative in

the action (2.4):

∫ p+

0
dσ

∫

dτ ρy · q̇ → −
∫ p+

0
dσ

∫

dτ(ρ̇y · q + ρ ẏ · q). (4.1)

In deriving eq. (3.1), the term proportional to ρ̇ on the right hand side of this equation was

dropped, since in the free theory, ρ is time independent. In the interacting theory, this is
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no longer the case. Notice that this term is only non-zero at the points where transitions

between the solid and dotted lines take place, and therefore it can be thought of as part of

the interaction. One can see this explicitly by transforming the fermion field by

ψ → exp

(

i
1 − σ3

2
y · q

)

ψ, ψ̄ → ψ̄ exp

(

−i1 − σ3

2
y · q

)

.

Under this transformation, the fermion kinetic energy transforms according to

iψ̄ψ̇ → iψ̄ψ̇ + ρ̇y · q, (4.2)

and the unwanted term, ρ̇y · q, cancels between eqs. (4.1) and (4.2). All the other terms

in the action are unchanged, except for the interaction term

g
∑

σ

ψ̄σ1ψ → g
∑

σ

ψ̄ (cos(y · q)σ1 − sin(y · q)σ2)ψ. (4.3)

This is then the new interaction term that has to be added to the free Hamiltonian

H0. The resulting total Hamiltonian is, however, difficult to handle as it stands. For

one thing, we would like to eliminate the auxilliary field q in favor of y and Π, as we

did in the case of the free theory. But since the equations of motion for q are now non-

linear, this can no longer be done explicitly. Also, such a complicated theory is difficult to

quantize directly. Both of these problems can be overcome by quantizing the model in the

interaction representation. For the convenience of the reader, in the next paragraph, we

briefly describe the interaction representation, as it is needed for the problem at hand.

Consider the operator U responsible for the transition from the initial states at τ = τi
to final states at τ = τf , and expand it in powers of g. The n’th term in the perturbation

expansion of this operator can be written as

Un =
gn

n!

∫

dτ1 · · ·
∫

dτn T (HI(τ1) . . . HI(τn)) ,

where T stands for time ordering. The important point is that the fields that appear

in the definition of HI are all free fields: For example, y and Π evolve according to H0

(eq. (3.10)), and satisfy the canonical algebra (3.7).

This still leaves the question of what to do with q. Making use of the interaction

picture, we will show that one can set

q = −Π, (4.4)

in HI , where Π is the freely propagating momentum conjugate to y, introduced in section

3. We have already established this relation for the free theory, but only on solid lines

(eq. (3.4)). We are therefore entitled to use it in the interaction picture, provided that

the q that appears in HI is located on a solid line. However, as we have argued earlier,

the interaction takes place at the transition point between solid and a dotted lines, and

to complicate matters, it can easily be shown from the equations of motion that q is

discontinuous at this point. This ambiguity is resolved by noticing that we are dealing with
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an end point contribution coming from the partial integration with respect to τ in (4.1).

Consequently, the q in question is located either at the beginning or the end of a solid

line. We can therefore use (4.4) and rewrite the interaction Hamiltonian in the interaction

representation as

HI = g
∑

σ

ψ̄ (cos(y · Π)σ1 + sin(y ·Π)σ2)ψ. (4.5)

Now that the interaction is written in terms of the canonical coordinates and momenta,

it is possible to exit from the interaction representation and go back to the Hamiltonian

picture by setting

H = H0 +HI +Hf , (4.6)

where H0 is given by (3.10) and HI by (4.5), and

Hf =
∑

σ

g ψ̄σ1ψ.

Of course, the fields in the Hamiltonian picture are no longer free fields. Instead, they

satisfy the equations of motion generated by the full interacting Hamiltonian. The main

purpose of the detour via the interaction representation was to justify the replacement (4.4).

So far we have adopted the Hamiltonian approach, but we can now easily construct

the action corresponding to H, through the well known relation,

S =

∫

dτ

(

∑

σ

Π · ẏ −H

)

. (4.7)

Since S is defined over the phase space, the independent variables of integration in the

corresponding functional integral are both y and Π. Although we shall not need this

action in the rest of this work, it is of some interest to compare it with eq. (2.4), our

starting point, to see how it avoids the problem of the divergent functional integration.

The crucial difference is that unlike in (4.7), where both the coordinates and the momenta

are independent variables of integration, the functional integration in (2.4) is over only y.

To see what is going on more clearly, we imagine carrying out the functional integral

over the fermion field. The result is a sum over functional integrals, each associated with

a different set of solid lines (see the discussion following eq. (3.7)). Consider now a typical

term in this sum. The Hamiltonian H depends only on the Π’s that are located on the solid

lines; the Π’s that live on the dotted lines are absent. We recall that the functional integral

over action (2.4) was divergent because that action was independent of the variables located

at the dotted lines. In contrast, the above action still depends on those momenta through

the first term on the right. Integrating over them gives the equations

ẏ(σ, τ) = 0, (4.8)

for only those σ located at the dotted lines. As we have already seen earlier, the field y is

constrained to be τ independent on the dotted lines, and the corresponding momenta act

as Lagrange multipliers enforcing this constraint.
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Figure 4: The two φ3 vertices.

We would like to stress that the form of the action where both the coordinates and

the momenta appear as independent variables is more fundamental: That is the form that

comes out of the usual derivation of the path integral. One can then pass to the coordinate

version of the path integral by integrating over the momenta. This integration is usually

easy to do since the dependence on the momenta is quadratic. However, in this case, the

action (4.7) is not quadratic in the momenta; as we have just seen, the dependence on

some of the momenta is in fact linear. Integration over these momenta resulted in the con-

straints (4.8), which are missing in the formulation based on (2.4). Alternatively, one may

try to impose these constraints by hand, but since they change depending on the location

of the dotted lines, there does not seem to be any practical way of doing it. We conclude

that there is no practical alternative to the phase space form of the action; the form of the

action in terms of coordinates only that was used [5] resulted in an ill defined path integral.

5. Vertex correction

We pointed out earlier that the world sheet theory we have so far does not reproduce the

prefactor 1/(2p+) in the propagator (eq. (2.1)). This problem was addressed in [5] in the

context of the mean field approximation. Here, using the projection operator technique,

we will incorporate this factor into the Hamiltonian.

Although originally the factor 1/(2p+) was part of the propagator, it turns out that it

is more convenient to associate with the vertices. This is done by attaching it either to the

beginning or the end of the propagator, and then transferring to the vertex located at that

position. Consider the two basic vertices pictured in figure 4 a,b. In the first one, the +

vertex, a dotted line turns into a solid one, and in the other, the − vertex, the reverse takes

place. The solid lines are labeled as 1,2 and 3, as shown in the figure, and the propagators

are labeled by the corresponding pair of indices, 12, 23 and 13 respectively. Let us call the

extra factor to be attached to the first vertex V− and the factor that goes with the second

vertex V+. The only thing that is fixed is their product:

V+ V− =
1

8 p+
12 p

+
23 p

+
13

, (5.1)
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and one is free to choose one of them arbitrarily, so long as the product satisfies the above

relation. We make the natural symmetric choice2

V = V+ = V− =
1

√

8 p+
12 p

+
23 p

+
13

, (5.2)

which simplifies the resulting algebra.

We are now ready to combine the V ’s with HI in order to supply the missing 1/(2p+)

factors. Defining

V± = ψ̄ σ± ψ exp (∓iy · Π) , (5.3)

we can , schematically, rewrite the full interaction Hamiltonian, incorporating the 1/(2p+)

factors, in the following form:

HI → g (V+ + V−) V G (5.4)

In this equation, G is a projection operator which is inserted to automatically choose the

correct vertex configurations. By this, we mean the following: Both vertices in figure 4 con-

sist of three propagators meeting at a point, and each propagator consists of two solid lines

seperated only by dotted lines. The correct vertex configuration is chosen by attaching G to

the propagator bounded by the solid lines 1 and 3 in figure 4. This operator should be unity

when the two solid lines are seperated by only dotted lines, and zero otherwise. We already

faced exactly the same problem in deriving eq. (3.10), and we could use here the same pro-

jection operator, F . It is, however, more convenient to define a slightly different operator:

G(σi, σj) =

(

k=j−1
∏

k=i+1

ρ̄(σk)

)

ρ(σj). (5.5)

The relation between the two projection operators is,

F(σi, σj) = ρ(σi)G(σi, σj).

We will later see why G is better suited for the later computations.

Eq. (5.4) can now be rewritten in a more explicit form:

HI = g
∑

σ2

∑

σ1<σ2

∑

σ3>σ2

G(σ1, σ3) (V+(σ2) + V−(σ2))
√

8 (σ2 − σ1)(σ3 − σ2)(σ3 − σ1)
, (5.6)

where σ1,2,3 are the coordinates of the lines 1,2 and 3 in figure 4. Notice that the denom-

inators in this expression never vanish: The distance between the σ coordinates is at least

a, the unit of the lattice spacing. A possible infrared divergence is therefore avoided by

the compactification of the coordinate x− at radius R = 2π/a (see the discussion following

eq. (2.6)).

To the above expression for the interaction Hamiltonian, one has to add the free

Hamiltonian H0 (eq. (3.10)), to arrive at the total Hamiltonian

H = H0 +HI .

2This choice is different from the one in reference [5].
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We would like to emphasize that in this final form, the Hamiltonian is exact: Nothing

has been omitted and as yet, no approximations have been made. If so desired, one could

also go over to the path integral formulation through eq. (4.7). Of course, as would be

expected, the expression for HI is quite complicated; for example, it is non-local in σ.

However, it is local in the time coordinate τ , which makes the Hamiltonian formulation

possible. Of course, one cannot hope to make progress without some approximation. In the

next section, we will see that a great simplification results when one applies the mean field

approximation; for example, one can determine the ground state of the model. Independent

of any approximation, however, one thing should be clear: We have already seen above

that there is no infrared divergence. Since what we have here is a quantum mechanical

system with finite degrees of freedom, and there can also be no ultraviolet divergence. We

therefore have a perfectly finite model. In the next section, we will verify this in the mean

field approximation.

Before closing this section, we would like to demonstrate directly that the Hamiltonian

formalism we have developed correctly reproduces the light cone Feynman graphs on the

world sheet. Starting with the free Hamiltonian of eq. (3.6), we will show that it generates

the free theory on the world sheet. Using eq. (3.4), we can make the replacement (eq. (4.4)),

Π(σa) → −q(σa),

on the solid lines, and note that, the time evolution operator

exp (−iH0 τ)

generates a collection of free propagators (eq. (2.1)), with solid lines as boundaries, without,

however, the prefactor 1/(2p+) and for m = 0. But since the free theory is nothing but

the collection of free propagators, this completes the demonstration.

Next, consider the interaction, which causes transitions between solid and dotted lines.

The vertices responsible for these transitions are represented by the term

g
∑

σ

ψ̄σ1ψ

in the fermionic part of the Hamiltonian. The missing prefactor of the propagators can be

incorporated into these vertices (see eq. (5.6)). The use of world sheet fermions as a tool

for building interaction vertices was fully developed in references [2, 5] and reviewed to

some extent in the preceding sections. We therefore conclude that the interacting theory

is also correctly reproduced by the Hamiltonian approach.

6. The mean field approximation

The mean field approximation is a statistical approximation scheme which has been long

in use in both field theory and many body physics with varying degree of success. In the

context of the problem at hand, the basic idea is to replace the operator ρ (eq.5) by its

ground state expectation value ρ0:

ρ→ ρ0 = 〈ρ〉. (6.1)
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To do this systematically, it is convenient first to promote ρ to be an independent field by

adding the term

∆S =

∫ p+

0
dσ

∫

dτ λ

(

ρ− 1

2
ψ̄(1 − σ3)ψ

)

(6.2)

to the action, where λ is a Lagrange multiplier field. An alternative approach, which we will

not pursue and which gives the same results obtained here, is to bosonize the fermions. We

can then in principle compute the ground state energy as a function of ρ after integrating

over the other fields. ρ0 is then the classical field configuration that minimizes this energy.

Originally, being a composite of the fermions, ρ could only take on the values 0 and 1;

after being promoted to an independent field, ρ and hence ρ0 can take on any value between

0 and 1. There is also a statistical interpretation, derivable from the Euclidean version of

the path integral. Remembering that ρ = 1 corresponds to a solid line and ρ = 0 to a

dotted line, ρ0 is then the probability of finding a solid line at a given location. In general,

ρ0 could depend on the coordinates σ and τ ; however, with the boundary conditions we

have chosen (see the discussion following eq. (2.4)), it is natural to assume that the ground

state of the system is translationally invariant in both directions. Consequently, ρ0 can

be taken to be a constant. As we shall see shortly, replacing ρ by a constant leads to an

enormous simplification.

It is natural to ask how good this approximation is. If we set

ρ = ρ0 + ∆ρ,

what we are doing is to neglect ∆ρ, the quantum fluctuation around the classical field

ρ0. In the previous work [2, 5], it was argued that the fluctuation term is suppressed by

a factor of 1/
√
D, where D is the dimension of the transverse space. This is at best a

formal argument, since in practice, D is not necessarily large.3 Here we will not try to

justify the mean field method; instead, we will simply point out a necessary condition for

its validity. It is clear that statistical methods can only be successfully applied to problems

with large degrees of freedom. In the present case, the number of degrees of freedom is

roughly proportional to N = p+/a, the total number of lines, dotted or solid, on the world

sheet. Large number of degrees of freedom means small a or equivalently, large R, the

radius of compactification. It follows that, only in the limit of large R, which we have

assumed earlier to simplify the algebra, can we hope to get reasonable results from the

mean field method.

Next, we are going to compute the ground state energy of the system as a function of

ρ0, and determine ρ0 by minimizing the energy. The crucial question is, whether in the

limit of large N , ρ0 tends to zero or stays finite. It follows from its meaning as probability

that ρ0 represents roughly the proportion of the world sheet area covered by solid lines. A

vanishing value for it means that the dotted lines (bulk) greatly outnumbers the solid lines

(boundary). We note that this is the case for any fixed order in perturbation expansion:

In the limit of large N , the dotted lines dominate over the solid lines, and therefore, we

can conclude that the ground state of the system gets contribution mainly from fixed order

3D = 2 for the usual space-time.
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terms in the perturbation expansion. In contrast, if ρ0 6= 0, the solid and dotted lines are

in a finite ratio. This can only happen if as N becomes large, increasingly higher order

perturbation terms contribute to the ground state. This can be thought of as an unusual

phase of the model where the solid lines have condensed on the world sheet, and ρ0 can be

identified with the corresponding order parameter [5]. We will shortly see that, at least in

the mean field approximation, such a condensation takes place.

With these preliminaries out of the way, let us apply the mean field method to the the

two terms, H0 and HI . As explained above, all we have to do is replace F in eq. (3.10)

and G in eq. (5.6) by their expectation values. This amounts to setting

ρ→ ρ0, ρ̄→ 1 − ρ0,

in their definition, with the result that

〈F(σi, σj)〉 = ρ2
0 (1 − ρ0)

(σj−σi)/a−1, 〈G(σi, σj)〉 = ρ0 (1 − ρ0)
(σj−σi)/a−1, (6.3)

and consequently, we have,

H0 → ρ2
0

4

∑

i,j

(

(Π(σj) − Π(σi))
2

|σj − σi|
(1 − ρ0)

|σj−σi|/a−1

)

. (6.4)

This expression can be simplified further, but to no great advantage. It is already quadratic

in the momenta and simple enough as it stands.

Next, in eq. (5.6), carrying out the statistical averaging explained above, the sums over

σ1 and σ3, with σ2 fixed, can be done. Defining,

∑

σ1<σ2

∑

σ3>σ2

〈G(σ1, σ3)〉
√

8(σ3 − σ1)(σ2 − σ1)(σ3 − σ2)
= A(ρ0), (6.5)

we have,

HI → g A(ρ0)
∑

σ

(

exp(−iy ·Π) ψ̄σ+ψ + exp(iy · Π) ψ̄σ−ψ
)

, (6.6)

where,

A(ρ0) =
ρ0√
8 a3

∞
∑

n1=0

∞
∑

n2=0

(1 − ρ0)
n1+n2+1

√

(n1 + n2 + 2)(n1 + 1)(n2 + 1)
(6.7)

In deriving eq. (6.7), we have assumed that the upper limit of the sum over the σ’s

can be extended to infinity, whereas in reality there is a cutoff at σ = p+, where p+ is

the plus component of the total momentum entering the graph. The neglect of this cutoff

makes a difference only for small values of ρ0. Although it is not difficult to take care of

the cutoff, the resulting formulas become complicated. In the interests of simplicity, we

will work with the simple expressions derived above, keeping in mind the restriction that

they are not reliable for small values of ρ0.

We can now express the Hamiltonian in terms of the operators y, Π, ψ̄, ψ and the

parameter ρ0. It remains to diagonalize it and minimize the eigenvalue with respect ρ0. It
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very easy to find one simple state that partially diagonalizes the Hamiltonian; this is the

state where all momenta are zero:

Π(σ)|0〉 = 0. (6.8)

This choice clearly diagonalizes H0, with eigenvalue zero. This state is also an eigenstate

of the exponential operators that appear in HI (eq. (4.5)). This is because these operators

are dilatation operators that scale the momenta, and the state with zero momentum is

scale invariant:

exp

(

± i

2
y · Π

)

|0〉 = |0〉, V± → ψ̄σ±ψ. (6.9)

We have just shown that |0〉 is one of the eigenstates of the Hamiltonian. It is also the

unique state that is invariant under translations in both σ and τ . Under our assumption of

translation invariance of the ground state, it is therefore the only candidate for the ground

state.

Taking into account the contribution from ∆S (eq. (6.2)), and

H0|0〉 = 0,

the full Hamiltonian, acting on the ground state, can be written as a quadratic in the

fermion fields:

H|0〉 →
∑

σ

(

gA ψ̄σ+ψ + gA ψ̄σ−ψ +
λ0

2
ψ̄(1 − σ3)ψ − λ0 ρ0

)

, (6.10)

where λ has also been replaced by its constant ground state expectation value λ0.

It is now easy to complete the diagonalization. Since the fermions located at different

values of σ decouple, it boils down to diagonalizing a two by two matrix

M =
λ

2
(1 − σ3) − λρ0 + g Aσ1,

and the two energy levels are the eigenstates of M, multiplied by p+/a:

E± =
p+

2a

(

λ0(1 − 2ρ0) ±
√

λ2
0 + 4 g2A2

)

. (6.11)

We now carry out the integral over λ0, using the saddle point method. This approxima-

tion can formally be justified by invoking the large p+/a (large radius of compactification)

limit. For a more detailed treatment, see [5]. The saddle point is given by

∂E±

∂λ0
= 0 → λ0 = ∓|g|(1 − 2ρ0)A(ρ0)

√

ρ0 − ρ2
0

, (6.12)

and the energy at the saddle point is

E±(λ = λ0, ρ0) = ±2|g| p
+

a
A(ρ0)

√

ρ0 − ρ2
0. (6.13)

In figure 5, the function

F (x) = −
√

8 a3A(x)
√

x− x2,
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Figure 5: The function F(x).

is plotted, where x = ρ0. It has a unique minimum with negative energy at a non-zero

value of ρ0. As we have argued earlier, the non-vanishing of ρ0 at the minimum means

that a finite fraction of the world sheet area is occupied by the solid lines, or, in other

words, the solid lines have condensed. We therefore conclude that, at least in the mean

field approximation, the ground state is a condensate of the solid lines (boundaries). On

the other hand, the minimum of E+ is zero, at ρ0 = 0. Having a higher energy than the

ground state, this state is a false vacuum. Also, the vanishing of ρ0 means that this state

is in the perturbative phase of the model.

We would like to stress that the above results are quite robust; they do not depend on

the precise functional dependence of A. For the existence of a minimum of E− at a ρ0 6= 0,

all that is required is that A(ρ0) is positive and bounded in the allowed range of ρ0,

0 ≤ ρ0 ≤ 1.

Going back to eq. (6.5), we note that A is positive because the expectation value of G is

positive. But this follows from the definition of G: It is the product ρ’s and ρ̄’s, which are

a bunch of commuting positive semi-definite operators.

Altough so far we have studied the massless φ3 theory, so long the mass is not too big,

the results discussed above do not change with the introduction of a non-zero mass. In fact,

we could substantially take over the treatment of the massive theory given in reference [5];

but in the interests of keeping this article to a reasonable length, we will not do so.

Finally, we compare briefly the results obtained in this section to those in [5]. The

expression for the ground state energy that appeared in the earlier work is of the form

E± = Eb ± Ef . (6.14)

The first term Eb is the contribution, in the mean field approximation, of the bosonic part

of the action Sq (eq. (2.4)), and it is positive. The second term, ±Ef , is the contribution of

the fermionic sector of the theory, which includes both Sf (eq. (2.6)), and also the prefactor

1/(2p+) in the propagator (see section 5). Comparing with the present work, we see that

in eq. (6.13), the counterpart of Eb is absent; the ground state energy comes solely from

the fermionic sector. This is the main difference between the earlier work and the present
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Figure 6: The four φ4 vertices.

paper; apart from some unimportant details, the term Ef is substantially the same both

here and in [5]. This explains why we have a non-trivial ground state at ρ0 6= 0 both here

and in the earlier work: It all comes from Ef ; the presence or absence of a positive Eb makes

no difference. So we agree in the present work with the main result of references [2, 5],

although, of course, this is somewhat accidental since the expression for the ground state

energy derived here is different.

It is worthwhile noting that the ultraviolet cutoff dependence of the energy in the

earlier work was all due to Eb; Ef is ultraviolet finite. Where did Eb come from? We

believe that, as explained at the end of section 4, it came from an unjustified passage from

the form of the action in terms of both coordinates and momenta, to a form in terms of

only coordinates.

7. The φ4 theory

The rules for the world sheet graphs of the φ4 theory are a modest generalization of those

for φ3. The propagator is still the same (eq. (2.1)), and so are the boundary conditions (2.2)

and (2.3). Consequently, Sq is unchanged, but the interaction is different. Instead of a

single vertex, there are now two vertices, located at the same τ but at different σ’s. There

are now four possibilities, depending on whether the solid lines are incoming or outgoing,

and they are pictured in figure 6. The corresponding Sf , instead of eq. (2.6), is now given by,

Sf =

∫ p+

0
dσ

∫

dτ iψ̄ψ̇ − g2

∫

dσ

∫

dσ′
∫

dτ E(σ, σ′) (ψ̄σ1ψ)σ,τ (ψ̄σ1ψ)σ′,τ , (7.1)
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where,

E(σi, σj) =

k=j−1
∏

k=i+1

ρ̄(σk)

is closely related to F and G introduced earlier. It is inserted so that there are no unwanted

solid lines between the positions of the two vertices, σ and σ′.

We start with eq. (2.7), where Sq is the same as before but Sf is replaced by (7.1). Since

the free Hamiltonian depends only on Sq, we again end up with the same free Hamiltonian,

given by eq. (3.10). On the other hand, the interaction vertices are more complicated than

φ3 vertices. The four distinct vertices are pictured in figures 6 a,b,c,d. The interaction

Hamiltonian is the sum of the corresponding four terms:

HI = Ha
I +Hb

I +Hc
I +Hd

I , (7.2)

where,

Ha
I = g2

∑

σ

G(σ1, σ4)V−(σ2)V−(σ3)

4
√

(σ2 − σ1)(σ3 − σ2)(σ4 − σ3)(σ4 − σ1)
,

Hb
I = g2

∑

σ

G(σ1, σ4)V+(σ2)V−(σ3)

4
√

(σ2 − σ1)(σ4 − σ3)(σ4 − σ2)(σ3 − σ1)
,

Hc
I = g2

∑

σ

G(σ1, σ4)V−(σ2)V+(σ3)

4
√

(σ2 − σ1)(σ4 − σ3)(σ4 − σ2)(σ3 − σ1)
,

Hd
I = g2

∑

σ

G(σ1, σ4)V−(σ2)V−(σ3)

4
√

(σ2 − σ1)(σ3 − σ2)(σ4 − σ3)(σ4 − σ1)
. (7.3)

In this equation, V± are given by (5.3). The symbol
∑

σ indicates a quadruple sum

over the σ’s, subject to the ordering

σ4 > σ3 > σ2 > σ1.

We now search for the ground state of the system in the mean field approximation.

This involves several steps:

(a) Π(σ) can be set equal to zero in the ground state. The argument is the same one

following (6.8). We can therefore make the replacement

V± → ψ̄σ±ψ. (7.4)

(b) In the mean field approximation, G is replaced by its expectation value, given by

eq. (6.3).

(c) The fermionic bilinears are first bosonized by adding a term ∆H to the Hamiltonian:

∆H =
∑

σ

(

λ

(

ρ− 1

2
ψ̄(1 − σ3)ψ

)

+λ1

(

ρ1 − ψ̄σ1ψ
)

+ λ2

(

ρ2 − ψ̄σ2ψ
)

)

, (7.5)
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and then the λ’s and the ρ’s are replaced by their coordinate independent ground

state expectation values. In order to keep the notation simple, we will skip the

additional subscript “0” for the expectation value of the corresponding field. Putting

these steps together gives

H|0〉 → p+

a

g2

a2
B(ρ) (ρ2

1 + ρ2
2) + ∆H, (7.6)

where,

B(ρ) =
ρ

2

∞
∑

n1,n2,n3=0

(

(1 − ρ)n1+n2+n3+1

√

(n1 + 1)(n2 + 1)(n3 + 1)(n1 + n2 + n3 + 3)

+
(1 − ρ)n1+n2+n3+1

√

(n1 + 1)(n1 + +n2 + 2)(n2 + n3 + 2)(n3 + 1)

)

. (7.7)

In what follows, the detailed form of B will not be important; all that will matter is that

B is positive and bounded for 0 ≤ ρ ≤ 1, the physical range of ρ.

Repeating the steps following eq. (6.10), we diagonalize ∆H, a direct sum of two by

two matrices. The resulting two eigenvalues of the ground state energy are

E± =
p+

a

(

g2

a2
B(ρ)(ρ2

1 + ρ2
2) −

λ

2
± 1

2

√

λ2 + 4(λ2
1 + λ2

2) + λρ+ λ1 ρ1 + λ2 ρ2

)

. (7.8)

Applying the saddle point equations

∂E±

∂λ
= 0,

∂E±

∂λ1,2
= 0,

after some algebra, gives

λ1,2 = ∓ |λ| ρ1,2

2
√

1 − ρ2
1 − ρ2

2

, ρ2
1 + ρ2

2 = 4(ρ− ρ2). (7.9)

With the help of these equations, the dependence on λ1,2 and ρ1,2 in (7.8) can be eliminated,

and E± can be expressed in terms of only ρ;

E± = 4
p+

a

g+

a2
(ρ− ρ2)B(ρ). (7.10)

The above expression for the ground state energy is the basic result of this section.

We note that:

(a) Unlike in the case of the φ3 theory (eq. (6.13)), there is no splitting of the ground

state energy; for either sign of the square root in (7.8), the energy is the same.

(b) Remembering that B(ρ) is positive and bounded in the physical range of ρ, the ground

state energy is minimized for either ρ = 0 or for ρ = 1, with vanishing energy in both

cases. The first possibility corresponds to the trivial situation of an empty world

sheet with no Feynman graphs. The second case is equally trivial: It corresponds

to a world sheet completely covered with eternal solid lines, propagating freely with

no interaction. So unlike in the case of the φ3 theory, the ground state is not a

condensate.
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(c) In reaching this conclusion, we have taken g2 to be positive, in order to have a

stable φ4 theory. If, instead, we take g2 to be negative, the ground state energy

becomes negative. Since it also vanishes at the two end points, there is clearly a

minimum at some value of ρ different from zero or one. The ground state is therefore

a condensate for the “wrong sign” φ4. It is of some interest to note that early work on

string formation in field theory [9, 10] was also based on φ4 theory with negative g2.

It is no accident that there is no condensation for the positive sign of g2. In this case,

the interaction between the φ particles is repulsive, and evidently an attractive force is

needed to form a condensate. This attractive force is present in the φ3 model or the wrong

sign φ4, but unfortunately, both models are unstable. It remains to see whether non-abelian

gauge theories, despite being stable, can still support a condensate on the world sheet.

8. Conclusions and future directions

The summation of the planar Feynman graphs using world sheet techniques continues to be

one of the more interesting and challenging problems in contemporary research [11]. The

approach pursued by the present author and C.B.Thorn [1 – 3, 5] relied on the methods of

field theory applied to the world sheet. The starting point was the path integral based on a

suitable action on the world sheet; given the action, the meanfield approximation was used

to solve for the ground state of the theory. This was the approach used in [5]; however,

a serious problem with [5] was the necessity of an ultraviolet cutoff to get finite answers.

In this article, we do not directly use the path integral to quantize the theory; instead,

starting with the classical action, we formulate the dynamics in terms of the Hamiltonian

and the canonical commutation relations. The resulting theory is free of the ultraviolet

divergence, which is the main result of the present work.

Another advantage of the present approach is that the world sheet field theory can

be initially formulated exactly, before resorting to any approximations. Furthermore, in

addition to the φ3, on which most of the previous work was based, we are able to extend

our treatment to the φ4 theory.

In the later part of the paper, we show that, using the mean field approximation, it is

possible to extract some information from this formalism. In particular, we are interested

in the structure of the ground state of the model. There are two alternative pictures for

the ground state: Either it is perturbative or the Feynman graphs form a dense network

(condensate) on the world sheet. In the case of the φ3 model and the φ4 model with the

“wrong” sign of the coupling constant, we find that the condensate phase is the one that

is favored energetically, whereas for the φ4 model with the physical sign of the coupling,

the perturbative ground state has the lower energy. For the φ3 theory, this confirms the

results of [2, 5]; the main advance over the earlier work is that the present work is on a

more solid footing, since no ultraviolet cutoff was needed in deriving them.

Much still remains to be done. For example, there is an infrared cutoff in the model in

the form of the compactification of the lightcone coordinate x−; at least in the mean field

approximation, it should be possible to decompactify the model by removing this cutoff.
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Another interesting project is to go beyond the leading order in the mean field method and

compute the non-leading terms. These non-leading contributions are important, since they

contain information about the spectrum of the model. The knowledge of the spectrum

will help answer the question whether the condensation of Feynaman graphs on the world

sheet results in the formation of a string. A spectrum that consists of asymptotically linear

trajectories would signal string formation on the world sheet. Also, we expect the φ3 theory

and the φ4 theory with wrong sign of the coupling to be unstable; the knowledge of the

spectrum should give some information about the stability of the model. Finally, using the

tools introduced in this paper, especially the technique of projection operators, it should

be possible to tackle physically more relevant models, such as non-abelian gauge theories.
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